PPARs and the cardiovascular system.
نویسندگان
چکیده
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Originally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPAR gamma appears to be highly expressed during atherosclerotic lesion formation, suggesting that increased PPAR gamma expression may be a vascular compensatory response. Also, ligand-activated PPAR gamma decreases the inflammatory response in cardiovascular cells, particularly in endothelial cells. PPAR alpha, similar to PPAR gamma, also has pleiotropic effects in the cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPAR alpha activation inhibits vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However, PPAR delta overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPAR delta ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation. Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of PPAR-dependent and -independent signaling will provide the foundation for future research on the role of PPARs in human cardiovascular biology.
منابع مشابه
Role of peroxisome proliferator-activated receptor alpha and gamma in antiangiogenic effect of pomegranate peel extract
Objective(s): Herbal medicines are promising cancer preventive candidates. It has been shown that Punica granatum L. could inhibit angiogenesis and tumor invasion. In this study, we investigated whether the anti-angiogenic effect of pomegranate peel extract (PPE) is partly attributable to Peroxisome proliferator-activated receptors (PPARs) activation in the Human Umbilical Vein Endothelial Cell...
متن کاملPPARs/RXRs in Cardiovascular Physiology and Disease
The PPAR family of nuclear receptor transcription factors are important regulators of cardiovascular function and metabolism. Because of this, PPARs are potentially interesting pharmacologic targets for treating cardiometabolic disease. The reviews in this series discuss the regulatory functions of PPARs in maintaining metabolic and physiologic homeostasis in a variety of cells and tissues. Add...
متن کاملPPARs, Cardiovascular Metabolism, and Function: Near- or Far-from-Equilibrium Pathways
Peroxisome proliferator-activated receptors (PPAR alpha, beta/delta and gamma) play a key role in metabolic regulatory processes and gene regulation of cellular metabolism, particularly in the cardiovascular system. Moreover, PPARs have various extra metabolic roles, in circadian rhythms, inflammation and oxidative stress. In this review, we focus mainly on the effects of PPARs on some thermody...
متن کاملEvaluation of the Relationship between Peroxisome Proliferator Receptors (PPARα, PPARγ, and PPARδ) Expression and Carcinoembryonic Antigen (CEA) in Patients with Colorectal Cancer
Introduction: Studies have shown that an increase in carcinoembryonic antigen (CEA) is associated with the progression of colorectal cancer and is considered a sensitive diagnostic factor for CRC. Moreover, the role of peroxisome proliferators (PPARs) has recently been considered in colorectal cancer. This study aimed to investigate the relationship between the expression level of PPARs and CEA...
متن کاملControl of Macrophage Activation and Function by PPARs PGC Coactivators in the Developing and Diseased Heart PPARs and the Vessel Wall LXR, Inflammation, and Vascular Disease Estrogen Receptor Signaling and Cardiovascular Disease
Macrophages, a key component of the innate defense against pathogens, participate in the initiation and resolution of inflammation, and in the maintenance of tissues. These diverse and at times antithetical functions of macrophages are executed via distinct activation states, ranging from classical to alternative to deactivation. Because the dysregulation of macrophage activation is pathogenica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antioxidants & redox signaling
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2009